

Tripal Web Service - BrAPI

[image: _images/tripal-ws-brapi-module.png]
A Drupal module that implements the Breeding API (BrAPI) standardized specifications
for Tripal websites that host genotypic/phenotypic data stored in a CHADO Database.
BrAPI is an interface for data interchange between crop breeding applications.

Resource

	Breeding API (BrAPI)

	http://docs.brapi.apiar.io

	Tripal

	http://tripal.info

	CHADO

	http://gmod.org/wiki/Chado

	Drupal

	https://www.drupal.org

Step-by-step guides:

	Requirements

	Configuration
	Summary table showing system variables:

	Configure Tripal Web Service BrAPI Module

	Configure Tripal Web Service BrAPI Calls

	Configure Tripal Web Service BrAPI Version

	Configure Tripal Web Service BrAPI Search Calls Request Log

	Tripal WS BrAPI Call Types

	Setup Tripal WS BrAPI Call
	A. General information about calls: File structure

	B. General information about calls: Naming file and class

	C. General information about calls: External module implementing a hook must implement hook using hook string (see configuration)

	Create Tripal WS BrAPI Custom Call

	Create Tripal WS BrAPI Search Call

	Create Tripal WS BrAPI Override Call or Call Alias

	Contributing
	Quickly setting up a Testing/Demo Environment using Docker

	Automated Testing

	Manual Testing (Demonstration)

Requirements

Tripal WS Brapi requires that you have the following installed or setup in your
Tripal website.

	Tripal 3 (with Tripal Web Service extension)

	http://tripal.info

	CHADO

	http://gmod.org/wiki/Chado

	Drupal 7.x

	https://www.drupal.org

Since some database queries involve data from multiple Chado tables, an intermediate
knowledge of Structured Query Language or SQL query, particularly using TABLE JOINS
and combining conditions is beneficial in creating most BrAPI calls.

Configuration

TRIPAL_WS_BRAPI module generates a number of system variables that will give end
users technical control over its general operation and call request response mechanism.
Upon installation of this module, the following table summarizes all system variables
created and the default value each one is set to.

FILE: tripal_ws_brapi/includes/config.inc

Summary table showing system variables:

	Configuration

	Use

	Default Value

	$config_ws_brapi

	Holds the name of the module. To prevent variable name conflict with other
modules, all system variables are prefixed with the module name.

	Do not change

	$config_version

	The default BrAPI version of this implementation.

	1.3

	$config_resultset_limit

	Limit the number of items/data per page returned by a BrAPI call request

	100 items per page

	$config_supported_method

	REST request methods supported.

	GET and POST

	$cofig_menu_level

	An arbitrary levels may be added to request URL as outlined in BrAPI URL
structure specifications. See BrAPI URL Structure [https://brapi.docs.apiary.io]

	web-services

	$config_hook

	External modules can implement a new call or override existing call through
the use of Drupal hooks. The string value of this configuration is used to
signal this module that a module is implementing calls.

	tripal_ws_brapi_call

	$config_allow_override_hook

	In cases where an external module implements a call that is identical in
name and version to an existing call, this option will decide which of the
two call instances to apply.

	no – use the local version of the call.

All configuration variables can be modified as desired, except for the module name.
Be sure to save your changes before installing the module. Alternatively, most of
these system variables can be altered using the configuration page after the
installation routine.

[image: ../../_images/configuration-configuration-page.png]
Figure 1 – Module configuration page showing all active BrAPI calls and the
module each call is hosted. Series of page tabs show sections of this module that
can be configured.

Configuration page allows system administrator to set different values to system
variables outlined above. In addition, all active BrAPI calls or simply calls,
as well as, search request call logs are summarized in this interface.
This page can be accessed using:

A. Drupal administration context menu /Tripal/Extensions/Tripal Web Service – BrAPI

Alternatively, copy and paste this URL into the browser’s location bar.

B . host/ admin/tripal/extension/tripalwsbrapi/configure

Sections are laid out in page tabs and are labelled to indicate which part of this
module it covers. Each tab as seen in Figure 1, moving from left to right is
summarized in the table below.

	CONFIGURE TRIPAL WEB SERVICE BRAPI

	Configure overall module operation such as menu levels, HTTP request
methods to support and call override strategy.

	BRAPI VERSION

	Add BrAPI version(s) to support.

	BRAPI CALLS

	Configure call restrictions or filter conditions used by each call when
performing queries.

	SEARCH REQUEST LOG

	A summary of all search request made. See
BrAPI Search Services [https://brapi.docs.apiary.io/#introduction/search-services]

Configure Tripal Web Service BrAPI Module

[image: ../../_images/configuration-configure-module.png]
Figure 2 – Configuration page showing module settings.

Most system variables described can be accessed and modified using this form.
Each field item (in all sections) can be described with a help or information
text by hovering the mouse pointer on to help (question mark) icons.
Click Save configuration button to save changes each time an option is modified.

Note

Clear cache each time when setting menu levels options.

	Configuration

	Use

	Default Value

	Menu Levels

	An arbitrary levels may be added to request URL as outlined in BrAPI URL
structure specifications. See BrAPI URL Structure [https://brapi.docs.apiary.io]

	web-services

	Page result limit

	Limit the number of items/data per page returned by a BrAPI call request

	100 items per page

	Request methods

	REST request methods supported.

	GET and POST

	Allow override call

	In cases where an external module implements a call that is identical in
name and version to an existing call, this option will decide which of the
two call instances to apply.

	no – use the local version of the call.

Configure Tripal Web Service BrAPI Calls

[image: ../../_images/configuration-configure-call.png]
Figure 4 – Configuration page showing call settings.

Every call setup (see setting up calls) that performs a query to a CHADO database
table can be configured using this form. This page enables system administrators
to create additional restriction or filter criteria based on values stored in
columns CHADO.table – type_id column and CHADO.property table.
Each select field contains a summarized values from either of the table columns
for quick and easy selections. A summary table below this form outlines all
restrictions to a call as shown in Figure 4.

A row in the summary table can be interpreted as (from left to right column)

Note

Call, version X, hosted by Y module, titled ABC, restricts its results
by type_id/value column, where its type_id value is of type W cv, equals to H cvterm.

To setup a database query filter/restriction to a call.

	Select a BrAPI call from the select box.

Note

When a call does not involve querying of data from a database table,
such as a custom call, a warning message will pop up instructing user that
call cannot implement a query condition.

	Each call can either use the column type_id or a property table. Restrict

select field will analyze data stored and decide if it could support either
option. Select an available option.

	Once a restrict option has been selected, subsequent fields will auto-populate

with relevant values, once again based on values or records stored.

	Select option when prompted.

Note

Another field labelled Value will present when restrict is set to property table.

	Click Add configuration button to save.

	When additional term is required, re-select the same call title. All select

field elements will auto-fill with values that have been previously selected
for easy and quick selection. Select additional values.

	All configurations will be summarized in the summary table.

Note

Implement the call restriction created when setting up the call.
See Setup Tripal WS Call.

Configure Tripal Web Service BrAPI Version

[image: ../../_images/configuration-configure-version.png]
Figure 3 – Configuration page showing BrAPI version settings.

Most system variables described can be accessed and modified using this form.
Each field item (in all sections) can be described with a help or information
text by hovering the mouse pointer on to help (question mark) icons. Click Save
configuration button to save changes each time an option is modified.

Warning

A version unsupported error message will be returned when attempting
to request a call with undefined or not configured version number.

To support multiple versions of BrAPI in a single implementation, this page enables
system administrators to plan and set additional version numbers. BrAPI only
requires the major version number (leftmost digit also seen in request url – brapi/v1/..)
when requesting a call, while calls can be versions 1.2 and/or 1.3 etc.

This version construct can be arranged using this page.

	Select major version number from the list in Major version select field.

	Select minor version number from the list in Minor version select field.

	Click Add version button to save.

	Each version added will be sorted and grouped according to major version
number shown in the summary table below the form.

	To add more version to a major version, re-select the major version number
and select a minor version number then click Add version button. Minor
version select field keeps track of what has been added, thus making sure
no the same minor version number can be added more than once.

	Additional version will be sorted accordingly as they are added to the group.

	With multiple version, select a default, among the list of minor versions,
to set as the default version of a major version number.

	Use Reset button to drop all other versions except the default already set.

	To remove version (including minor versions and default), click Remove button.

Warning

This module can only default to a single version at a given time per
major version ie BrAPI 1.3. Other version such as BrAPI 1.2 can be implemented
along side BrAPI 1.3, but requires switching from either versions as desired.

Configure Tripal Web Service BrAPI Search Calls Request Log

[image: ../../_images/configuration-configure-search-log.png]
Figure 5 – Configuration page showing search request log.

As described by BrAPI search services
(https://brapi.docs.apiary.io/#introduction/search-services),
all search call request using POST request method will be saved. This page summarizes
all search call history, along with every call details, parameters, date created and
number of times it has been requested. A Remove button is available to erase a
log item permanently.

Tripal WS BrAPI Call Types

Tripal Web Service BrAPI Call Types: This module structures call into 3 types
namely, Custom call, Database call and Search call.

[image: ../../_images/call-types-call-types.png]

	Custom Call

	Data source can be supplied by user either by typing a list or by defining
an array of values. No database table involve.

	Database Call

	Data source comes from a Chado Table and can be configured to restrict result
based on the type_id column or value column of the corresponding prop (property) table.

	Search Call

	Similar to Database call, search call operates like a database call except
each request undergoes a two-stage process. First it will post a request that
will result in a unique id number then the second stage, using the id number
returned will produce the response. A log keeps a record of requests made
(see Manage Search Request Log).

This modules has built-in calls namely v1/calls, v1/germplasm, v1/crops, v1/commoncropnames
and search call v1/search/germplasm, all of these calls can be viewed by requesting using
the BrAPI call url structure.

**For example: Host/web-services/brapi/v1/call or host/web-services/brapi/v2/serverinfo **

Apart from these predefined calls mentioned, an external module (hosted by the
same Drupal website) can implement a call or override a call without necessarily
storing call assets in the same directory as this module, which will enable
developers to extend functionality.

See Setup Tripal WS BrAPI Call.

Setup Tripal WS BrAPI Call

A. General information about calls: File structure

All calls (directory and files) must be saved in a calls/ directory of this module.
This file structure also applies to external modules implementing a set of calls.
TRIPAL_WS_BRAPI can support 2 file structures observed in BrAPI 1.3 and BrAPI 2.0,
illustrated in the folder diagram below, labelled as A and B, respectively.

[image: ../../_images/setup-calls-directory-structure.png]
Figure 6 – Call directory structure supported. A: basic structure where calls
fall directly under version folder and B: where calls are grouped using a
category sub-folder.

Every call directory contains 1 or 2 PHP .inc files:
1. is a base call class file
and
2 search implementation class file.

#2 file is optional when a call does not require search functionality.

See figure below showing an example of a call, v1/germplasm call using file
structure A or file structure B:

[image: ../../_images/setup-calls-file-structure.png]
Figure 7 – Call file structures showing both directory structure options.

B. General information about calls: Naming file and class

Call name or title should be the identical call title defined by BrAPI specification.
Directory name should match this title with all letters in lowercase form.
Filename must be in the following format:

	**TripalWebService + V + Major Version Number + Call name or title with

	the first letter in capitalized form**

	**For example:

	TripalWebServiceV1Germplasm.inc (to include the file extension which is .inc).**

A search implementation uses the same naming arrangement but has the keyword
Search inserted between the version number and the call title.

	**For example:

	TripalWebServiceV1SearchGermplasm.inc (to include the file extension which is .inc).**

Both of these naming methods apply to when implementing a call that will be hosted
outside the module with the exception that each name must be prefixed with the
keyword External.

	**For example:

	ExternalTripalWebServiceV1Germplasm.inc or ExternalTripalWebServiceV1SearchGermplasm.inc**

Class name will match the filename created using this method.

C. General information about calls: External module implementing a hook must implement hook using hook string (see configuration)

To register an external module implementing a BrAPI call, use the hook string
configuration and implement the following hook in the .module file:

/**
 * Implement BrAPI calls.
 */
function HOOK_tripal_ws_brapi_call() {
 // Indicate this module implements BrAPI calls.
 return TRUE;
}

Where the HOOK is the module name and tripal_ws_brapi_call is the hook string
defined in the configuration. See Configuration.

Create Tripal WS BrAPI Custom Call

Creating a custom call, or other call types, is as easy as setting up parameters
and defining a query or callback function that is responsible for generating
relevant data as the response or result from executing a custom call.

Class definition

class TripalWebServiceBrapiV1Yourcallname extends TripalWebServiceCustomCall {
 // Parameters allowed in this call which can be included in the call as
 // query string, ie: host/brapi/v1/call?parameter 1=value¶meter 2=value...
 public $call_parameter = [
 // Key : Expected value for this key.
 ‘parameter 1’ => ‘data type’,
 ‘parameter 2’ => ‘data type’,
 ‘parameter …’ => ‘data type’,
];

 // Keyword used to identify result items.
 // data for most call in BrAPI v1.3 and may vary in newer version.
 protected $call_payload_key = 'data';

 // Unit of response for this call.
 // With corresponding minor version a response is for.
 // Fields must match item count in the result.

 // See restriction on multiple version in Configuration.
 public $response_field = [
 '1.3' => ['response field 1', 'response field 2', ' response field …'],
 '1.2' => ['...'],
 '2.0' => ['...'],
];

 // Call parameters as provided in the request url.
 public $call_asset;
 // Class name.
 public $class_name;

 // PREPARE RESULT:
 // Callback to create data.
 public function getResult() {
 // Define values matching the number of elements defined in $response field.
 return [];
 }
}

	Rename the class name using the format defined relating to call class
filename (titled Yourcallname in the code snippet above).

	List the parameters that user can apply to request specific items from the
result. Each parameter can be set to a data type which will ensure that
only appropriate entries are permitted.

	int

	(single value) numbers, including 0.

	text

	(single value) text, alphanumeric value.

	array-int

	(array, multiple values) elements are numbers.

	array-text

	(array, multiple values) elements are text value.

	hash-code

	(single value) xxxxx-xxxxx-xxxxx-xxxxx-xxxxx alphanumeric format.

	Define the unit of data and its elements in $response_field. Set the
key to the target BrAPI version number. ie 1.3 or 1.2.

	Set the $call_payload_key to a string value. This variable will render
as the key in the response. ie data (BrAPI 1.3) and call (BrAPI 2.0) used
by /calls and /serverinfo calls, repectively.

	Define the result in the only method of this class getResult().

Note

	Ensure that the number of items and the order of data returned by getResult()

	should match the items in the $response_filed. Include a mechanism to handle
each parameters defined in #2. Parameters requested in the url are available
in getResult() through the property $call_asset.

$this->call_asset[‘parameters’] property and
$this->call_asset[‘parameters’][‘parameter 1’],
$this->call_asset[‘parameters’][‘parameter 2’],
$this->call_asset[‘parameters’][‘parameter ...’] to access the value.

	Save the file.

	Test your call using host/web-services/brapi/v + version/yourcallname.

	Test your call with the parameters set using
host/web-services/brapi/v + version/yourcallname?parameter 1=value¶meter 2=value…

Create Tripal WS BrAPI Search Call

Similar to creating a custom call and database call, a search call uses both
GET and POST request methods to view a query result and request a query,
respectively.

Class definition

class TripalWebServiceBrapiV1SearchYourcallname extends TripalWebServiceSearchCall {
 // Parameters allowed in this call which can be included in the call as
 // query string. See example below using CURLOPT_POSTFIELDS option.
 public $call_parameter = [
 // Key : Expected value for this key.
 ‘parameter 1’ => ‘data type’,
 ‘parameter 2’ => ‘data type’,
 ‘parameter …’ => ‘data type’,
];

 // Keyword used to identify result items.
 protected $call_payload_key = 'data';

 // Unit of response for this call.
 // With corresponding minor version a response is for.
 // Fields must match item count in the result.

 // See restriction on multiple version in Configuration.
 public $response_field = [
 '1.3' => ['response field 1', 'response field 2', ' response field …'],
 '1.2' => ['...'],
 '2.0' => ['...'],
];

 // Chado table, source data.
 public static $chado_table = 'chado.table ie stock'

 // Call parameters as provided in the request url.
 public $call_asset;
 // Class name.
 public $class_name;

 // PREPARE RESULT:
 // Callback to create data.
 public function getResult() {
 // Define values matching the number of elements defined in $response field.
 return [];
 }
}

	Rename the class name using the format defined relating to call class filename
(titled Yourcallname in the code snippet above).

	List the parameters that user can apply to request specific items from the
result. Each parameter can be set to a data type which will ensure that
only appropriate entries are permitted.

	int

	(single value) numbers, including 0.

	text

	(single value) text, alphanumeric value.

	array-int

	(array, multiple values) elements are numbers.

	array-text

	(array, multiple values) elements are text value.

	hash-code

	(single value) xxxxx-xxxxx-xxxxx-xxxxx-xxxxx alphanumeric format.

	Define the unit of data and its elements in $response_field. Set the key to
the target BrAPI version number. ie 1.3 or 1.2.

	Set the $call_payload_key to a string value. This variable will render as
the key in the response. ie data (BrAPI 1.3) and call (BrAPI 2.0) used by
/calls and /serverinfo calls, repectively.

	Define the result in the only method of this class getResult().

Note

	Ensure that the number of items and the order of data returned by getResult()

	should match the items in the $response_filed. Include a mechanism to handle
each parameters defined in #2. Parameters requested in the url are available
in getResult() through the property $call_asset.

$this->call_asset[‘parameters’] property and
$this->call_asset[‘parameters’][‘parameter 1’],
$this->call_asset[‘parameters’][‘parameter 2’],
$this->call_asset[‘parameters’][‘parameter ...’] to access the value.

	Save the file.

	Test your call using host/web-services/brapi/v + version/yourcallname.

	Test your call with the parameters set using
host/web-services/brapi/v + version/yourcallname?parameter 1=value¶meter 2=value…

Note

This class extends to a different class than the one used in defining
database calls and custom calls and it is important to specify the source
table ($chado_table property). Class name now contains a Search keyword as
described in naming class section. The class this class extends to handles
both POST (log search request) and GET requests.

Search call operates differently compared to other calls – custom call and
database call. Search call needs to POST the call (with parameters) and at this
stage a hash code is returned. A call can then be requested using the code
to view the result or response.

	POST Search Request

	GET Search Request

	Sample request.
.. code-block:: php

$ch = curl_init();

// Search call
curl_setopt($ch, CURLOPT_URL, “host/web-services/brapi/v1/search/searchcall”);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE);
curl_setopt($ch, CURLOPT_HEADER, FALSE);
curl_setopt($ch, CURLOPT_POST, TRUE);

// Parameter
curl_setopt($ch, CURLOPT_POSTFIELDS, “{“parameter” : [“value”]}”);
curl_setopt($ch, CURLOPT_HTTPHEADER, [“Content-Type: application/json”]);
$response = curl_exec($ch);
curl_close($ch);
var_dump($response);

	host/web-services/brapi/v1/search/searchcall?searchResultDbId=7FKIa-s29e7-PJJBS-nLL4N-jNoLs

	Add parameters in // Parameter line. Parameter in JSON format.

	Using the hash code returned, get the call response by adding a the parameter
searchResultDbId=HASH CODE to the call.

	RESPONSE: hash code 7FKIa-s29e7-PJJBS-nLL4N-jNoLs

	Call response JSON.

A copy of the POST request and the hash code can be accessed in the configuration
page. To perform the same search request, use the same hash code to GET request
call to retrieve the same response. This call request and its parameters can be
accessed multiple times so long as the log entry is not deleted.

Create Tripal WS BrAPI Override Call or Call Alias

In some cases, calls from different versions implement the same process carried
out by an existing call. To eliminate the need to copy and paste codes,
call can point to an existing call and function identical to the source call.

Class definition

class TripalWebServiceBrapiV2Serverinfo extends TripalWebServiceCustomCall {
 // Call parameters as provided in the request url.
 public $call_asset;

 // Override the base class payload key.

 // Keyword used to identify result items.
 // data for most call in BrAPI v1.3 and may vary in newer version.
 protected $call_payload_key = 'call';

 // Call existing and identical call already setup.
 // Declare existing call.
 //
 // module name / char v + major version number / call name.
 //
 // See table below for the actual alias of existing calls in this module.
 public static $is_alias_of = 'tripal_ws_brapi/v1/calls';
}

	To override the $call_payload_key of the source call, set the value of the
property $call_payload_key.

	Extend the class identical to the type of call of the source call.

	Finally, set the source call by specifying the module it is hosted followed
by the version number then the call title. For example, the call – mygermplasm
that mimics germplasm call, located in tripal_ws_brapi module:

tripal_ws_brapi/v1/germplasm

In cases when call wants to point to a search call, add search/ level between
version number and the call title.

tripal_ws_brapi/v1/search/germplasm

Note

Ensure correct override configuration settings when implementing an
override, by using the exact same call title but is hosted by module external
to tripal_ws_module.

Note

When implementing from an external module, prefix the class and class
filename with External keyword (see naming class section).

For example:

class ExternalTripalWebServiceBrapiV2Serverinfo extends TripalWebServiceCustomCall

Summary table of existing Tripal WS BrAPI Calls when implementing a call Alias and/or Override:

	tripal_ws_brapi Calls

	Call alias property - $is_alias_of:

	v1/calls

	tripal_ws_brapi/v1/calls

	v1/commoncropnames

	tripal_ws_brapi/v1/commoncropnames

	v1/crops

	tripal_ws_brapi/v1/crops

	v1/germplasm

	tripal_ws_brapi/v1/germplasm

	v1/search/germplasm

	tripal_ws_brapi/v1/search/germplasm

	Other calls

	TO DO.

Contributing

We’re excited to work with you! Post in the issues queue with any questions, feature requests, or proposals.

Quickly setting up a Testing/Demo Environment using Docker

The following commands clone this repository and then start a Drupal7Docker container with the the current directory mounted. It also initializes the Tripal site by starting postgresql, installing Tripal and Chado, and preparing the database.

git clone https://github.com/UofS-Pulse-Binfo/tripal_ws_brapi.git
cd tripal_ws_brapi
docker pull laceysanderson/drupal7dev
docker run --publish=8888:80 --name=tdocker -tid --env-file=tests/example.env --volume=`pwd`:/var/www/html/sites/all/modules/tripal_ws_brapi laceysanderson/drupal7dev:latest
docker exec -it tdocker /app/init_scripts/startup_container.sh

Next we need to install this module and add test data to the site. The following commands achomplish this given the above setup.

docker exec tdocker /var/www/html/vendor/bin/drush en tripal_ws_brapi tripal_ws_brapi_testdata -y
docker exec --workdir=/var/www/html tdocker ./vendor/bin/drush php-script sites/all/modules/tripal_ws_brapi/tripal_ws_brapi_testdata/drush-scripts/loadTestData.php

Now you can proceed by running the automated tests:

docker exec --workdir=/var/www/html/sites/all/modules/tripal_ws_brapi tdocker composer up
docker exec --workdir=/var/www/html/sites/all/modules/tripal_ws_brapi tdocker vendor/bin/phpunit

Or manually testing it through http://localhost:8888/web-services.

Automated Testing

This module uses Tripal Test Suite [https://tripaltestsuite.readthedocs.io/en/latest/installation.html#joining-an-existing-project]. To run tests locally:

cd MODULE_ROOT
composer up
./vendor/bin/phpunit

This will run all tests associated with the Tripal WS BrAPI extension module. If you are running into issues, this is a good way to rule out a system incompatibility.

Warning

It is highly suggested you ONLY RUN TESTS ON DEVELOPMENT SITES. We have done our best to ensure that our tests clean up after themselves; however, we do not guarantee there will be no changes to your database.

Manual Testing (Demonstration)

Using the Testing Helper Module

First enable the helper module through the UI or using Drush:

drush en tripal_ws_brapi_testdata

Then go to the provided user interface at https://[yourdrupalsite]/tripalwsbrapi/testdata

[image: ../_images/mainpage.png]
The tabbed table shows you all the test data which will be loaded into your site when you click the “Load Test Data” button.

You can edit the test data by editing the CSV files distributed with this helper module. More tables can be added by editing the array of chado table names in the tripal_ws_brapi_testdata.module file.

There is also an interface provided for testing POST calls. This is available at https://[yourdrupalsite]/tripalwsbrapi/testsearch

[image: ../_images/searchpage.png]

Using the Database Seeder

We have provided a Tripal Test Suite Database Seeder [https://tripaltestsuite.readthedocs.io/en/latest/db-seeders.html] to make development and demonstration of functionality easier. To populate your development database with fake germplasm data:

	Install this module according to the instructions in this guide.

	Run the database seeder to populate the database using the following commands:

cd MODULE_ROOT
composer up
./vendor/bin/tripaltest db:seed BrAPIDatabaseSeeder

	To access the web services go to https:[your drupal site]/web-services assuming the default configuration.

Warning

NEVER run database seeders on production sites. They will insert fictitious data into Chado.

Index

Contents:

	Tripal WS BrAPI Call Types

Contents:

	Configuration
	Summary table showing system variables:

	Configure Tripal Web Service BrAPI Module

	Configure Tripal Web Service BrAPI Calls

	Configure Tripal Web Service BrAPI Version

	Configure Tripal Web Service BrAPI Search Calls Request Log

Contents:

	Create Tripal WS BrAPI Custom Call

Contents:

	Create Tripal WS BrAPI Override Call or Call Alias

Contents:

	Requirements

Contents:

	Create Tripal WS BrAPI Search Call

Contents:

	Setup Tripal WS BrAPI Call
	A. General information about calls: File structure

	B. General information about calls: Naming file and class

	C. General information about calls: External module implementing a hook must implement hook using hook string (see configuration)

Create Tripal WS BrAPI Database Call

Similar to creating a custom call, a database call uses a CHADO table (as source table)
and requires 3 callback function or method to handle querying the source table.
Two of the methods represent query type that matches the configuration settings
applied to calls – by type_id or by value of prop table.

Class definition

class TripalWebServiceBrapiV1Yourcallname extends TripalWebServiceDatabaseCall {
 // Parameters allowed in this call which can be included in the call as
 // query string, ie: host/brapi/v1/call?parameter 1=value¶meter 2=value...
 public $call_parameter = [
 // Key : Expected value for this key.
 ‘parameter 1’ => ‘data type’,
 ‘parameter 2’ => ‘data type’,
 ‘parameter …’ => ‘data type’,
];

 // Keyword used to identify result items.
 // data for most call in BrAPI v1.3 and may vary in newer version.
 protected $call_payload_key = 'data';

 // Unit of response for this call.
 // With corresponding minor version a response is for.
 // Fields must match item count in the result.

 // See restriction on multiple version in Configuration.
 public $response_field = [
 '1.3' => ['response field 1', 'response field 2', ' response field …'],
 '1.2' => ['...'],
 '2.0' => ['...'],
];

 // Chado table, source data.
 public static $chado_table = 'chado.table ie stock'

 // Call parameters as provided in the request url.
 public $call_asset;
 // Class name.
 public $class_name;

 // PREPARE RESULT:
 // Callback to create data.

 // Unfiltered result.
 public function getResult() {
 // Define values matching the number of elements defined in $response field.
 return [];
 }

 // Result matching type_id
 public function getResultByTypeid() {
 $result = '';
 return $result;
 }

 // Result matching value in property table.
 public function getResultByPropertyTable() {
 $result = '';
 return $result;
 }
}

Note

NOTE: This class extends to a different class than the one used in
defining custom calls and it is important to specify the source table

($chado_table property).

To apply parameters (defined in the class) to a call, include each item with
the request url.

For example:
Host/web-services/brapi/v1/germplasm?commonCropName=Lentil

	Rename the class name using the format defined relating to call class
filename (titled Yourcallname in the code snippet above).

	List the parameters that user can apply to request specific items from the
result. Each parameter can be set to a data type which will ensure that only appropriate entries are permitted.

	int

	(single value) numbers, including 0.

	text

	(single value) text, alphanumeric value.

	array-int

	(array, multiple values) elements are numbers.

	array-text

	(array, multiple values) elements are text value.

	hash-code

	(single value) xxxxx-xxxxx-xxxxx-xxxxx-xxxxx alphanumeric format.

	Define the unit of data and its elements in $response_field. Set the key
to the target BrAPI version number. ie 1.3 or 1.2.

	Set the $call_payload_key to a string value. This variable will render
as the key in the response. ie data (BrAPI 1.3) and call (BrAPI 2.0) used
by /calls and /serverinfo calls, repectively.

	Construct query that will correspond to each case - Unfiltered, By type_id
and By value in property table. The last two options only apply when desired.

Note

Ensure that the number of items in the data array should match the
items in the $response_filed.

Include a mechanism to handle each parameters defined in #2. Parameters
requested in the url are available in each methods through the property
$call_asset

$this->call_asset[‘parameters’] property and
$this->call_asset[‘parameters’][‘yourparameter’] to access the value.

	Save the file.

	Test your call using host/web-services/brapi/v + version/yourcallname.

 _images/tripal-ws-brapi-module.png
Tripal Web Service BrAPI

_static/ajax-loader.gif

_images/setup-calls-directory-structure.png
tripal_ws_brapi

}7 calls
Iy [
o [Jcara
[Jeainp
v
[[Jeategorya
calla
e I o PP
L [category b
callc
calld

_images/setup-calls-file-structure.png
B germplasm °

TripalWebServiceBrapViGemplasm

—(]

TripalWebServiceBrapiVISearchGenmplasm

L £ sermplosm
d

TripalWebServiceBrapiViGermplasm

0

TripalWebServiceBrapiViSearchGermplasm

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/configuration-configure-version.png
T

_images/mainpage.png
< c © [localhost

& Dashboard Content Structure Tripal Appearance People Modules Configuration Reports Help Hello tripaladmin Log out

Add content Add Tripal Content Find content Find Tripal Content Edit shortcuts

Home

0 No test data in chado tables. Click button to load test data.

Q TRIPAL BrAPI Calls Test Data Load Test Data

— Sort:

Navigation I !

o PROJECT | PROJECT_RELATIONSHIP ~ ORGANISM STOCK =~ PHENOTYPE CONTACT = GENOTYPE
» FEATURE ~ FEATUREMAP CVTERM

PROJECT & Property table

[project]
Source file: download CSV

I L

Aenean elementum blandit magna, at euismod augue aliquet quis. Nam lectus tortor, tempus

GRS eget tempus vel

Project B libero eget volutpat sagittis, dui diam semper lacus, et hendrerit eros neque eget eros
Project C libero eget volutpat sagittis, dui diam semper lacus, et hendrerit eros neque eget eros
Project D Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris cursus

Project E libero eget volutpat sagittis, dui diam semper lacus, et hendrerit eros neque eget eros
Project F Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris cursus

Project G libero eget volutpat sagittis, dui diam semper lacus, et hendrerit eros neque eget eros
Project H libero eget volutpat sagittis, dui diam semper lacus, et hendrerit eros neque eget eros
Project | libero eget volutpat sagittis, dui diam semper lacus, et hendrerit eros neque eget eros

Project J Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris cursus

_images/configuration-configure-module.png
[R ——
Tripal Web Service - BrAPI o

Menu levels @ Page resuit limit @
Separate eves with | Number from 10~ 1000

Save configuration | Reload | Al

Request methods @
Separatevlue wih, e GET, POST

Allow override call @

_images/configuration-configure-search-log.png
e R

s e i~ 9 o v s | | snens s oo

e iog
rausTo st | maeras | Gom ot | wiowe
[o [Ehenms Tuesiy o5, 2020 214390m ' femove

e s (=8 Tue by 05,2020 1214245 f Remove

_images/searchpage.png
= C @ © [localhost 000 &%

& Dashboard Content Structure Tripal Appearance People Modules Configuration Reports Help Hello tripaladmin Log out

Add content Add Tripal Content Find content Find Tripal Content Edit shortcuts

Home
Q TRIPAL BrAPI Calls Test Search Calls
Call URL *
Navigation http://localhost:8888 /web-services/brapi/v1/search/
> Parameter name + : (colon) + values (comma separated). Example germplasmDblds:123,456,789
5 Parameter #1

Parameter #2

Parameter #3

Parameter #4

Parameter #5

POST

nav.xhtml

 Table of Contents

 		
 Tripal Web Service - BrAPI

 		
 Requirements

 		
 Configuration

 		
 Summary table showing system variables:

 		
 A. Drupal administration context menu /Tripal/Extensions/Tripal Web Service – BrAPI

 		
 B . host/ admin/tripal/extension/tripalwsbrapi/configure

 		
 Configure Tripal Web Service BrAPI Module

 		
 Configure Tripal Web Service BrAPI Calls

 		
 Configure Tripal Web Service BrAPI Version

 		
 Configure Tripal Web Service BrAPI Search Calls Request Log

 		
 Tripal WS BrAPI Call Types

 		
 Setup Tripal WS BrAPI Call

 		
 A. General information about calls: File structure

 		
 B. General information about calls: Naming file and class

 		
 C. General information about calls: External module implementing a hook must implement hook using hook string (see configuration)

 		
 Create Tripal WS BrAPI Custom Call

 		
 Create Tripal WS BrAPI Search Call

 		
 Create Tripal WS BrAPI Override Call or Call Alias

 		
 Contributing

 		
 Quickly setting up a Testing/Demo Environment using Docker

 		
 Automated Testing

 		
 Manual Testing (Demonstration)

 		
 Using the Testing Helper Module

 		
 Using the Database Seeder

_images/configuration-configuration-page.png
o » Adminsston T »Extensons

I S B & ot o s | i

T module et 0 sow extarmai ok cal o averid exisingcll. e s confgure Trigs WeService AP for o normation.

calls
o woouLe
e oL o
[commoncropnames o bl
[cors oL o
[sermpasm ol bl
ysexcngermpizsm oL o
i) commoncopnames il bl
@serero oL o
[@oermotasm g rapt
[@sevcnsermpizim -
[avcans o searches
[semenancats o sexcnes

e [

_static/minus.png

_images/configuration-configure-call.png
Tl Web Sevice - 18P

@ T ot 1 e e e g s s

sonn @ [y [— Term .1 s)
o)

Joo—

= - SER e

_static/plus.png

_static/file.png

_images/call-types-call-types.png
Database

_static/hexagon_pattern.png

_static/up-pressed.png

_static/small_logoonly.png

_static/up.png

